Trials and limits of automation: Experiences from the Zimmerwald well characterized and fully automated SLR-system

P. Lauber, M. Ploner, M. Prohaska, P. Schlatter, P. Ruzek, T. Schildknecht, A. Jäggi

Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald,
Astronomical Institute, University of Bern, Switzerland

20th International Workshop on Laser Ranging, October 12th, 2016, Potsdam

Hardware Communication Layout

Day and night

ON

Automated Devices

```
2: OFLIPFLOPE
  1: OABSENKUNG
                                   3: OFLIPFLOPW
                                                   4: OIN_HUMID
                                                                    5: OIN_TEMP
  6: OPARKPOS
                  7: A0321_INIT
                                   8: A0321_SYNC
                                                   9: A0322_INIT
                                                                  10: A0322_SYNC
 11: ABSENKUNG
                 12: AZI_NULLPT
                                  13: AZ_HEATER
                                                  14: AZ_HUMID
                                                                  15: AZ_H_MON
 16: AZ_TEMP
                 17: A_MIRROR
                                  18: BEAM_CAM
                                                  19: CABLE_TEMP
                                                                  20: CAL_WINDOW
                 22: CAMAC_PC
 21: CAMAC
                                  23: CAMAC_PWR
                                                  24: CAMTRIGEN
                                                                  25: CCDZMDX
                 27: CFD_CONT
                                  28: CHILL_COND
 26: CC_BEEPER
                                                  29: CHILL_FLOW
                                                                  30: CHILL_TEMP
 31: CM_SHUTTER
                 32: CNTR_TEMP
                                  33: CONST_FLZT
                                                  34: COOLING
                                                                   35: COUNTER_01
                 37: COUNTER_03
                                  38: CP1_DRIVE
 36: COUNTER_02
                                                  39: CP1_POWER
                                                                  40: CP1_WHEEL
 41: CP2_DRIVE
                 42: CP2_POWER
                                  43: CP2_WHEEL
                                                  44: CP3_DRIVE
                                                                  45: CP3_POWER
                                  48: CP4_POWER
 46: CP3_WHEEL
                 47: CP4_DRIVE
                                                  49: C_SHUTTER
                                                                  50: DAY_TV
                 52: DECIMATE
                                  53: DELPHINUS
                                                  54: DETECTORS
                                                                  55: DIVERGENCE
 51: DBS
 56: DIV_OK
                 57: DIV_RST
                                  58: DM_DRIVE
                                                  59: DOME
                                                                  60: DOME_FAN
 61: DOME_LIGHT
                 62: DOME_NCLOS
                                  63: DOME_SPOT
                                                  64: DOMW_NCLOS
                                                                  65: FO_DELAY
 66: FO_PERCORR
                 67: FO_PERIOD
                                  68: FP_GR
                                                  69: FREQ3_INIT
                                                                  70: F_SHUTTER
 71: GPS_DIFF_B
                 72: HWI_NULLPT
                                  73: LASER
                                                  74: LASER_GR
                                                                  75: LASER_IR
 76: LRO_CORR
                 77: LSH_INH
                                                  79: LS_CHILLER
                                  78: LS_AIRTEMP
                                                                  80: LS_COOLTMP
 81: LS_DI_0
                 82: LS_LASTEMP
                                 83: LS_MEDOX
                                                  84: LS_OSCTEMP
                                                                  85: LS_WARN
 86: L_SHUTTER
                 87: L_SHUTT_GR
                                  88: L_SIMUL
                                                  89: M2_FLUSH
                                                                  90: MANCOR_X
 91: MANCOR_XO
                 92: MANCOR_Y
                                  93: MANCOR_YO
                                                  94: MAN_MODE
                                                                  95: MASER1PS1
 96: MASER1PS2
                                  98: MASERV1BA
                                                                 100: MASERV1PS
                 97: MASERTEST
                                                  99: MASERV1IN
                102: MASERV2IN
101: MASERV2BA
                                 103: MASERV2PS
                                                 104: METEO_FAN
                                                                 105: ML_DRIVE
|106: MOTION_DET 107: NDFILT_GR
                                108: NDFILT_IR
                                                 109: ND_CALFILT 110: OBS_WINDOW
|111: OUT_HUMID | 112: OUT_PRESS
                                113: OUT_TEMP
                                                 114: P1_P2
                                                                 115: PINHOLE
                     PWR_FAIL_2 118: PWR_LABPC
                                                119: R1_SHUTTER 120: R2_SHUTTER
|116: PWR_FAIL_1 117:
121: R3_SHUTTER 122:
                     RACK_TEMP 123: RADAR
                                                 124: RADAR_TEST 125: RAINSENSOR
126: RA_TUNE
                     RA_TUNE_OK 128: ROT_CONFL 129: ROT_SHUTC
                                                                 130: ROT_SHUTE
131: ROT_SHUTL 132: ROT_SHUTON 133: ROT_SH_CL 134: ROT_SH_OP 135: ROT_SH_RST
                                 138: R_SWITCH_1 139: R_SWITCH_2 140: SAT_RGTOFF
|136: RR_WINDOWS 137: R_GATE
|141: SEN_CLK_S
                142: SI1100
                                 143: STAN3_INIT 144: STAN_FREQ3 145: START_OK
146: STOP_DOME
               147: SUN_ANGLE 148: SUN_COVER 149: SUN_C_STAT 150: TEL_BRAKES
151: TEL_LAMP
                152: TEMP_FORK
                                153: TEMP_M1
                                                 154: TEMP_PFI
                                                                 155: TEMP_TUBE
156: TILT_HOR
                157: TILT_PWR
                                 158: TILT_VER
                                                 159: TR_M_LOCK 160: TR_REMOTE
                162: TUBE_FAN
161: TR_STROBE
                                 163: TUBE_HEAT 164: V1_KEY
                                                                 165: VND_GR_OK
166: VND_IR_OK
                167: W_PRESS
                                 168: ZIMDATAPC2 169: ZIMLAT
```

- ~165 Devices
 - **Moving Devices:** Matching Lens, **Divergence Optics**
 - On/Off Devices: Laser Shutter, Tube Fan
 - Read-only Devices: Humidity Sensor, Maser In Voltages
- **Design Rules:**
 - MTBF: long lifetime,
 - less maintenance

Pierre Lauber: Trials and limits of automation: Experiences from the Zimmerwald well 20th International Workshop on Laser Ranging, October 12th, 2016, Potsdam characterized and fully automated SLR-system

Example: Some Devices...

Software Maintenance

Linux is your friend here

Philosophies

- Upgrading old, in order to maintain automation
- Writing new, which automates new things, e.g. Envisat data processing
- ~300.000 lines Fortran77 source code, under revision control, some «minor» not
- Design Rules:
 - less maintenance, use (**IX) standard interfaces
 - simple expansible
- BTW: Use host- and usernames carefully...

20th International Workshop on Laser Ranging, October

2016, Potsdam

Software Porting

Motivation:

- Old code has less bugs!
- development very bad under DOS

Software interfaces:

- text terminal/keyboard-based,
- TCP/IP network, only one X11 application (pgplot) for residuals,
- byte code protocols (e.g. Modbus) network

Hardware interfaces:

- EPP, ISA
- Video graphics: If uses only text: API adapted to use neurses calls

F10 Display telescope status

F12 Back to BASH

F11 Wait for station computer connection

PC Hardware Maintenance and Porting

Idea: hardware redundancy, no complete new system, replace single components only

PCs Maintenance (copying):

- Station Control: made a virtual machine
- DAQ: almost cloned, lacks a print card
- Telescope: cloned
- Laser: program copied onto new PC and OS (Windows)

Porting DOS to Linux

- ISA port/memory mapped access seem to work first time as user root, or Linux driver
- last interesting tests in real environment come up... difficult: timing restrictions if any

Btw: Mixed experiences with new (all-in-one) SPS

Trials and limits of automation: Experiences from the Zimmerwald well Potsdam October 20th International Workshop on Laser Ranging, and fully automated SLR-system Pierre Lauber:

Limits of Automation

frequent

- optics cleaning
- replacing: fans, power supplies, batteries

rare

- receive path: Fabry-Pérot adjustment
- Maser frequency drift correction

automation: Experiences Ranging, -system

Night Tracking Camera

- Like in the earlier days of SLR: Point to HEO sat., between laser pulses take a photo, evaluate photo: find HEO sat., calculate deviation, move telescope directly to sat. position
- Digital Camera Neo sCMOS (Andor) evaluated: should fit purpose
- **Exposure Timing works**
- Light shade pipe required
- laser light filtering: Additional filter for IR too seems to solve
- Implementing Software of image processing continues...
- analogue technique was so easy...

Safety of Low Energy Tracking

- ... should be fully automated and should be fully secure
- Potsdam Targets: ISS (ELT: 0.1 mJ), Sentinel-3A, ...
 - for standard tracking: Why do we need so much energy at all? RegenOut 0.4mJ@532nm and 100Hz enough for all LEOs incl. Lageos (see also other publications...)
 - currently, everything depends on the satellite name only
 - one software problem should not affect safety!:
 - second software variable from second data channel required? (like Go/NoGo-Flag)
 - **Energy measurement in real-time:** Ulbricht Sphere + Photo Diode: less precision compared to thermal sensor: to be checked again
 - divergence control seems to be reliable measurements continue when at 8mJ again

s and limits of automation: Experiences from the Zimmerwald well 20th International Workshop on Laser Ranging, fully automated SLR-system

Excursion: Frequency Stability for ELT

- SLR Zimmerwald is phase locked to the Maser since 9.8.2016, 15:20 UTC
- Maser frequency drift is corrected manually: 1PPS Difference of GPS to the Maser is at the measurement precision of the GPS-receiver (res30ns/acc165ns)
- METAS (Time and Frequency Lab, located 8 km from station) checks for optical link between its Caesium fountain and station

Safety for European Laser Time Transfer (ELT)

Paper: "..ELT and Laser Safety for the ISS", U. Schreiber et al., 2013 Some checks for our system specific implementation:

- Easy to program: For ISS, switch CM_SHUTTER (located after energy measurement) ON (to open) if laser energy is less than...
- Mains Power Off/On Scenario and UPS (to be checked again):
 - Control-PCs have UPS, UPS can work contrary to safety
 - laser power supply and chiller have no UPS,
 - Shutters should be closed by gravity (currently by springs)
- Micro switches at Divergence Optics: seems to be a good idea
- Amplifier gain reduction:
 - Delay between Amp pumping and laser pulse + polarizer attenuator might work
 - Switching off Post-Amps: Amps not at thermal operating point: For fully automated operation, have to be back in stable operation condition after ISS passage: switching off Amps might be a bad idea

New Systems

Idea: New technology: Carbon-Fibre-Tube: high stiffness, cheaper

- Used for Space Debris, not yet for SLR, ok, equatorial mount is bad for SLR ...
- other motion controller: completely new, first version software, some minor source code imported from old system
- Camera readout "PCs": low power SBCs at telescope axis: Cubietruck, no mechanics (less maintenance): no active cooling/fan, flash/SSD memory, a lot of similar boards available: to be evaluated
- Satellite pointing at arc sec precision, development affected already others
- For SLR some is missing: e.g. Sun avoidance and timing precision!

Conclusion

- Think carefully about what you're going to implement, for both hardware and software!
- A lot of work to do...

Thank you very much for your attention!

Two new Towers for new Telescopes

Backup

- ZIMLAT-Telescope used for
 - Geodesy (SLR) and
 - **Imaging (Space Debris)**
 - Hybrid design is difficult: optical compromise
 - ELT: Event-Timing: Dassault-Elements required? We don't want to buy such expensive devices...

Time Transfer Principle

SLR in parallel

On-Board Clock

Stop

Aptrono Maigal In Stitute University of Berlu

Seminar at IAP: Laser Physics,

Excursion: The used Clock in Space

ACES (Atomic Clock Ensemble in Space)

- cold atoms in microgravity
- Combination of cold Caesium clock and H-Maser:
- test of PHARAO frequency stability 10⁻¹³xτ^{-1/2} and accuracy 3x10⁻¹⁶
- test of SHM frequency stability 2.1x10⁻¹⁵ @ 1000 s

Applications in Fundamental Physics

- gravitational red-shift
- drift in fine structure constant
- anisotropy of light

Pharao prototype in CNES ZeroG

Time Transfer Predecessors: simple clocks

- T2L2: Operated by France, OCA and CNES
 - On-board Clock (USO) no longer State-of-the-Art
 - At end of lifetime
 - Since years precision evaluation: Allan-Variance: about 1ps: optical transfer much better than RF ones
 - Data on request (see http://www.geoazur.fr/t2l2/en/data/v4/ Ground to Space section: 1 Triple data files tar-ball/ 1 day)
 - A lot of published papers
- LRO: Lunar Reconnaissance Orbiter (NASA), spacecraft around the moon (mission ended)
 - Requires enough energy, good weather conditions and schedule
 - Precision data NASA proprietary?

ELT: European Laser Time Transfer uses ACES

ELT difficulties:

- Operated by ESA via NASA via ISS-operators,
- ACES launch scheduled for 2016,
- Not yet operating,
- ISS operated -2020?
- Successor project of T2L2, in principal similar, new:
 - improved detector-retro-package, ready for launch, pre-flight experiments and papers well-known
 - The best On-board Clock ever: ACES
 - ESA requirement: Ground-Data-Infrastructure ready before Hardware launch
- **SLR-Stations**
 - locked to Maser: Time comparisons can be made

ELT objectives (a copy from an ELT workshop..)

Clock Comparisons and Time Transfer

- Space-to-ground comparisons of clocks reaching a TDEV of 4 ps between 300 s and 104s of integration time, better than 7 ps on the long-term
- common view comparisons below 6 ps per ISS pass
- Non-common view comparisons below 6 ps after 2000 s of dead time
- Space-to-ground and ground-to-ground synchronization of clocks

Laser Ranging

- Laser ranging performance at the centimetre level per single shot (50 ps one-way)
- Comparison of ranging techniques: one-way optical ranging, twoway optical ranging, microwave ranging
- Analysis of atmosphere propagation delays

